• 首页
  • 电脑设计
  • 软件编程
  • 建筑机电
  • 经济管理
  • 资格考试
  • 幼儿教育
  • 中小学教程
  • 大学课程
  • 电商网络
  • 生活服务
  • 综合教程
  • 教程下载网

您的位置:首页 > 综合教程 》 37.4GB AI精选付费资料包:从入门到实战
  • 教程简介
    本资料包专为AI学习者打造,包含37.4GB精选付费内容,涵盖人工智能行业报告、必读经典书籍、机器学习与深度学习算法教程、计算机视觉实战项目等。无论您是初学者还是进阶者,都能从中获取实用的学习资源。资料包内含OpenCV、YOLOV5、MASK-RCNN、Unet等实战视频课程及配套资料,助您快速掌握AI核心技术。此外,还提供超详细的人工智能学习大纲和论文合集,帮助您系统化学习并紧跟行业前沿。立即下载,开启您的AI学习之旅!
    以下云资源目录树快照生成于[1年前],该学习资料由夸克云用户[KK*5525]分享(只展示大部分文件和目录)
    37.4GB AI精选付费资料包:从入门到实战25.47 GB(mp4、flv视频253节;png、jpg图片51张;pdf、docx、txt文档214个;zip、rar压缩包37个;pptx演示文稿1个;)
    一:人工智能论文合集
    图神经网络(GNN)100篇论文集
    论文集索引.jpg29.73KB
    Survey
    一般推荐
    NeuralMessagePassingforQuantumChemistry.pdf511.15KB
    GeometricDeepLearning-GoingbeyondEuclideandata.pdf5.26MB
    DeepLearningonGraphs-ASurvey.pdf1.8MB
    ComputationalCapabilitiesofGraphNeuralNetworks(1).pdf1.28MB
    AComprehensiveSurveyonGraphNeuralNetworks.pdf1.8MB
    极力推荐
    TheGraphNeuralNetworkModel.pdf1.43MB
    RelationalInductiveBiases,DeepLearning,andGraphNetworks.pdf8.99MB
    Non-localNeuralNetworks.pdf1.24MB
    GraphNeuralNetworks:AReviewofMethodsandApplications.pdf2.67MB
    Models
    trainingmethods
    Neuralnetworksforrelationallearning-anexperimentalcomparison.pdf1.15MB
    LearningSteady-StatesofIterativeAlgorithmsoverGraphs.pdf3.09MB
    Knowledge-GuidedRecurrentNeuralNetworkLearningforTask-OrientedActionPrediction.pdf1000.46KB
    HierarchicalGraphRepresentationLearningwithDifferentiablePooling.pdf2.31MB
    Graphical-BasedLearningEnvironmentsforPatternRecognition.pdf335.92KB
    CovariantCompositionalNetworksForLearningGraphs.pdf482.53KB
    receptivefieldcontrol
    StochasticTrainingofGraphConvolutionalNetworkswithVarianceReduction.pdf1.25MB
    neighborhoodsampling
    InductiveRepresentationLearningonLargeGraphs.pdf1.04MB
    FastGCN-FastLearningwithGraphConvolutionalNetworksviaImportanceSampling.pdf358.35KB
    AdaptiveSamplingTowardsFastGraphRepresentationLearning.pdf579.95KB
    boosting
    DeeperInsightsintoGraphConvolutionalNetworksforSemi-SupervisedLearning.pdf1.96MB
    propagation_type
    skip
    Semi-SupervisedClassificationwithGraphConvolutionalNetworks.pdf853.42KB
    RepresentationLearningonGraphswithJumpingKnowledgeNetworks.pdf3.15MB
    gate
    Sentence-StateLSTMforTextRepresentation.pdf442.27KB
    GatedGraphSequenceNeuralNetworks.pdf748.16KB
    convolution
    Structure-AwareConvolutionalNeuralNetworks.pdf1.36MB
    SpectralNetworksandDeepLocallyConnected.pdf1.86MB
    LearningConvolutionalNeuralNetworksforGraphs.pdf639.85KB
    DeepConvolutionalNetworksonGraph-StructuredData.pdf4.57MB
    ConvolutionalNeuralNetworksonGraphswithFastLocalizedSpectralFiltering.pdf459.44KB
    BayesianSemi-supervisedLearningwithGraphGaussianProcesses.pdf689.89KB
    attention
    GraphClassificationusingStructuralAttention.pdf2.47MB
    GraphAttentionNetworks.pdf1.48MB
    AttentionIsAllYouNeed.pdf2.1MB
    others
    Geometricdeeplearningongraphsandmanifoldsusingmixturemodelcnns.pdf7.23MB
    Diffusion-ConvolutionalNeuralNetworks.pdf366.35KB
    DerivingNeuralArchitecturesfromSequenceandGraphKernels.pdf687.05KB
    DeepSets.pdf5.11MB
    ContextualGraphMarkovModel-ADeepandGenerativeApproachtoGraphProcessing.pdf570.59KB
    CelebrityNet-ASocialNetworkConstructedfromLarge-ScaleOnlineCelebrityImages.pdf16.33MB
    Anewmodelforlearningingraphdomains.pdf177.61KB
    AComparisonbetweenRecursiveNeuralNetworksandGraphNeuralNetworks.pdf247.2KB
    graph_type
    Mean-fieldtheoryofgraphneuralnetworksingraphpartitioning.pdf369.44KB
    HowPowerfulareGraphNeuralNetworks-.pdf678.3KB
    GraphPartitionNeuralNetworksforSemi-SupervisedClassification.pdf713.9KB
    GraphNeuralNetworksforRankingWebPages.pdf1.01MB
    GraphNeuralNetworksforObjectLocalization.pdf221.83KB
    GraphCapsuleConvolutionalNeuralNetworks.pdf1.93MB
    AdaptiveGraphConvolutionalNeuralNetworks.pdf803.92KB
    edge-informativegraph
    Modelingrelationaldatawithgraphconvolutionalnetworks.pdf323.62KB
    Graph-to-SequenceLearningusingGatedGraphNeuralNetworks.pdf4.06MB
    directedgraph
    RethinkingKnowledgeGraphPropagationforZero-ShotLearning.pdf4.21MB
    Applications
    text
    RecurrentRelationalNetworks.pdf307KB
    N-aryrelationextractionusinggraphstateLSTM.pdf455.67KB
    JointlyMultipleEventsExtractionviaAttention-basedGraph.pdf430.38KB
    GraphConvolutionalNetworkswithArgument-AwarePoolingforEventDetection.pdf324.7KB
    GraphConvolutionalNetworksforTextClassification.pdf1.83MB
    GraphConvolutionalEncodersforSyntax-awareNeuralMachineTranslation.pdf346.9KB
    GraphConvolutionoverPrunedDependencyTreesImprovesRelationExtraction.pdf784.41KB
    ExploringGraph-structuredPassageRepresentationforMulti-hopReadingComprehensionwithGraphNeuralNetworks..pdf453.5KB
    ExploitingSemanticsinNeuralMachineTranslationwithGraphConvolutionalNetworks.pdf604.59KB
    End-to-EndRelationExtractionusingLSTMsonSequencesandTreeStructures.pdf363.06KB
    EncodingSentenceswithGraphConvolutionalNetworksforSemanticRoleLabeling.pdf621.87KB
    AGraph-to-SequenceModelforAMR-to-TextGeneration.pdf290.15KB
    science
    VisualInteractionNetworks-LearningaPhysicsSimulatorfromVide.o.pdf5.41MB
    VAIN-AttentionalMulti-agentPredictiveModeling.pdf423.97KB
    UnderstandingKinRelationshipsinaPhoto.pdf1.44MB
    TranslatingEmbeddingsforModelingMulti-relationalData.pdf414.17KB
    TrafficGraphConvolutionalRecurrentNeuralNetwork-ADeepLearningFrameworkforNetwork-ScaleTrafficLearningandForecasting.pdf1.45MB
    SymbolicGraphReasoningMeetsConvolutions.pdf3.23MB
    StructuredDialoguePolicywithGraphNeuralNetworks.pdf779.24KB
    Spatio-TemporalGraphConvolutionalNetworks-ADeepLearningFrameworkforTrafficForecasting.pdf895.05KB
    SpatialTemporalGraphConvolutionalNetworksforSkeleton-BasedActionRecognition.pdf1.5MB
    SituationRecognitionwithGraphNeuralNetworks.pdf5.27MB
    Semi-supervisedUserGeolocationviaGraphConvolutionalNetworks.pdf1.13MB
    Self-AttentionwithRelativePositionRepresentations.pdf229.86KB
    Relationalneuralexpectationmaximization-Unsuperviseddiscoveryofobjectsandtheirinteractions.pdf1.15MB
    Relationalinductivebiasforphysicalconstructioninhumansandmachines.pdf1022.51KB
    RelationalDeepReinforcementLearning.pdf6.81MB
    ProteinInterfacePredictionusingGraphConvolutionalNetworks.pdf837.75KB
    NeuralRelationalInferenceforInteractingSystems.pdf2.83MB
    NeuralModuleNetworks.pdf1.03MB
    NeuralCombinatorialOptimizationwithReinforcementLearning.pdf393.17KB
    NerveNetLearningStructuredPolicywithGraphNeuralNetworks.pdf3.11MB
    MolecularGraphConvolutions-MovingBeyondFingerprints.pdf2.08MB
    MetacontrolforAdaptiveImagination-BasedOptimization.pdf1.6MB
    LearningtoRepresentProgramswithGraphs.pdf421.9KB
    LearningMultiagentCommunicationwithBackpropagation.pdf4.13MB
    Learningmodel-basedplanningfromscratch.pdf1.28MB
    LearningHuman-ObjectInteractionsbyGraphParsingNeuralNetworks.pdf3.91MB
    LearningGraphicalStateTransitions.pdf1.47MB
    LearningDeepGenerativeModelsofGraphs.pdf2.31MB
    LearningConditionedGraphStructuresforInterpretableVisualQuestionAnswering.pdf8.48MB
    LearningaSATSolverfromSingle-BitSupervision.pdf1.89MB
    InteractionNetworksforLearningaboutObjects,RelationsandPhysics.pdf1.91MB
    InferenceinProbabilisticGraphicalModelsbyGraphNeuralNetworks.pdf3.07MB
    ImprovedSemanticRepresentationsFromTree-StructuredLongShort-TermMemoryNetworks.pdf304.16KB
    HyperbolicAttentionNetworks.pdf3.08MB
    HybridApproachofRelationNetworkandLocalizedGraphConvolutionalFilteringforBreastCancerSubtypeClassification.pdf2.52MB
    GraphRNN-GeneratingRealisticGraphswithDeepAuto-regressiveModels.pdf2.43MB
    Graphnetworksaslearnablephysicsenginesforinferenceandcontrol.pdf2.72MB
    GraphConvolutionalNeuralNetworksforWeb-ScaleRecommenderSystems.pdf9.84MB
    GraphConvolutionalMatrixCompletion.pdf732.99KB
    GeometricMatrixCompletionwithRecurrentMulti-GraphNeuralNetworks.pdf6.99MB
    EffectiveApproachestoAttention-basedNeuralMachineTranslation.pdf243.97KB
    DynamicEdge-ConditionedFiltersinConvolutionalNeuralNetworksonGraphs.pdf567.07KB
    Discoveringobjectsandtheirrelationsfromentangledscenerepresentations.pdf4.99MB
    DeepInf-Modelinginfluencelocalityinlargesocialnetworks.pdf1.07MB
    DeepGraphInfomax.pdf8.15MB
    Cross-SentenceN-aryRelationExtractionwithGraphLSTMs.pdf540.89KB
    Convolutionalnetworksongraphsforlearningmolecularfingerprints.pdf785.36KB
    ConversationModelingonRedditusingaGraph-StructuredLSTM.pdf682.35KB
    ConstructingNarrativeEventEvolutionaryGraphforScriptEventPrediction.pdf654.87KB
    ConstrainedGenerationofSemanticallyValidGraphsviaRegularizingVariationalAutoencoders.pdf567.14KB
    CombiningNeuralNetworkswithPersonalizedPageRankforClassificationonGraphs.pdf483.25KB
    BeyondCategories-TheVisualMemexModelforReasoningAboutObjectRelationships.pdf618.71KB
    Attention,LearntoSolveRoutingProblems!.pdf1.48MB
    Attend,Infer,Repeat-FastSceneUnderstandingwithGenerativeModels.pdf1.3MB
    AdversarialAttackonGraphStructuredData.pdf593.12KB
    ActionSchemaNetworks-GeneralisedPolicieswithDeepLearning.pdf1.67MB
    Asimpleneuralnetworkmoduleforrelationalreasoning.pdf1.37MB
    ANoteonLearningAlgorithmsforQuadraticAssignmentwithGraphNeuralNetworks.pdf340.4KB
    ACompositionalObject-BasedApproachtoLearningPhysicalDynamics.pdf4.26MB
    knowledgegraph
    Zero-shotRecognitionviaSemanticEmbeddingsandKnowledgeGraphs.pdf1.63MB
    TheMoreYouKnow-UsingKnowledgeGraphsforImageClassification.pdf2.31MB
    Representationlearningforvisual-relationalknowledgegraphs.pdf6.9MB
    Multi-LabelZero-ShotLearningwithStructuredKnowledgeGraphs.pdf1.36MB
    ModelingSemanticswithGatedGraphNeuralNetworksforKnowledgeBaseQuestionAnswering.pdf437.8KB
    KnowledgeTransferforOut-of-Knowledge-BaseEntities-AGraphNeuralNetworkApproach.pdf355.22KB
    DynamicGraphGenerationNetwork-GeneratingRelationalKnowledgefromDiagrams.pdf1.19MB
    DeepReasoningwithKnowledgeGraphforSocialRelationshipUnderstanding.pdf2.76MB
    Cross-lingualKnowledgeGraphAlignmentviaGraphConvolutionalNetworks.pdf432.63KB
    image
    VisualQuestionAnswering
    OutoftheBox-ReasoningwithGraphConvolutionNetsforFactualVisualQuestionAnswering(1).pdf2.45MB
    Graph-StructuredRepresentationsforVisualQuestionAnswering.pdf3.74MB
    SemanticSegmentation
    PointNet-DeepLearningonPointSetsfor3DClassificationandSegmentation.pdf8.66MB
    Modelingpolypharmacysideeffectswithgraphconvolutionalnetworks.pdf4.18MB
    Large-scalePointCloudSemanticSegmentationwithSuperpointGraphs.pdf4.83MB
    DynamicGraphCNNforLearningonPointClouds.pdf5.07MB
    3DGraphNeuralNetworksforRGBDSemanticSegmentation.pdf2.23MB
    RegionClassification
    IterativeVisualReasoningBeyondConvolutions..pdf3.91MB
    ObjectDetection
    RelationNetworksforObjectDetection.pdf906.66KB
    LearningRegionfeaturesforObjectDetection.pdf1.68MB
    InteractionDetection
    Structural-RNN-DeepLearningonSpatio-TemporalGraphs.pdf1.1MB
    Imageclassification
    Few-ShotLearningwithGraphNeuralNetworks.pdf1.69MB
    graphgeneration
    NetGAN-GeneratingGraphsviaRandomWalks(1).pdf1.67MB
    MolGAN-Animplicitgenerativemodelforsmallmoleculargraphs(1).pdf1.1MB
    GraphConvolutionalPolicyNetworkforGoal-DirectedMolecularGraphGeneration.pdf517.97KB
    combinatorialoptimization
    LearningCombinatorialOptimizationAlgorithmsoverGraphs.pdf2.91MB
    CombinatorialOptimizationwithGraphConvolutionalNetworksandGuidedTreeSearch(1).pdf537.04KB
    深度学习论文精讲-BERT模型
    9.8-论文总结分析.mp476.41MB
    8.7-BERT模型训练策略.mp442.95MB
    7.6-向量特征编码方法.mp424.65MB
    6.5-输入数据特殊编码字符解析.mp443.88MB
    5.4-预训练模型的作用.mp418.43MB
    4.3-模型在NLP领域应用效果.mp433.56MB
    3.2-BERT模型摘要概述.mp432.28MB
    2.1-论文讲解思路概述.mp414.77MB
    1.课程介绍.mp436.9MB
    Resnet论文解读
    13-额外补充-Resnet论文解读.mp4117.38MB
    ICCV2021
    解压密码:iccv2021
    CVPR行人重识别论文解读
    6.5-图卷积模块实现方法.mp423.49MB
    5.4-基于图卷积构建人体拓扑关系.mp425.86MB
    4.3-局部特征热度图计算.mp421.11MB
    2.2-图卷积与匹配的作用.mp420.81MB
    1.1-关键点位置特征构建.mp417.96MB
    cvpr2021
    解压密码:cvpr2021
    CNN_不能错过的10篇论文
    Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf1.24MB
    4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf1.35MB
    1512.03385v1_DeepResidualLearningforImageRecognition.pdf800.18KB
    1506.02025_SpatialTransformerNetworks.pdf7.89MB
    1506.01497v3_FasterR-CNN.pdf6.59MB
    1504.08083_FastR-CNN.pdf713.99KB
    1412.2306v2_DeepVisual-SemanticAlignmentsforGeneratingImageDescriptions.pdf5.21MB
    1409.1556v6_VERYDEEPCONVOLUTIONALNetworks.pdf195.32KB
    1406.2661v1_GenerativeAdversarialNets.pdf518.05KB
    1311.2901v3_VisualizingandUnderstandingConvolutionalNetworks.pdf34.56MB
    1311.2524v5_R_CNN.pdf6.23MB
    五:深度学习神经网络基础教程
    神经网络模型基础课件资料
    Deep-Learning-with-PyTorch-Tutorials.zip80.87MB
    CNN+RNN+GAN
    源代码和PPT在Github下载.txt72Byte
    课程安装软件-Win10
    pycharm-community-2019.1.1.exe231.79MB
    cudnn-10.0-windows10-x64-v7.5.0.56(1).zip213.78MB
    cuda_10.0.130_411.31_win10.exe2.04GB
    Anaconda3-2019.03-Windows-x86_64.exe661.66MB
    课程安装软件-Ubuntu18.04
    cudnn-10.0-linux-x64-v7.5.0.56.tgz412.76MB
    cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb1.55GB
    Anaconda3-2019.03-Linux-x86_64.sh654.13MB
    RNN循环神经网络基础
    9.课时9LSTM中Layer的使用.mp412.17MB
    8.课时8LSTM基本原理-2.mp416.19MB
    7.课时7LSTM基本原理-1.mp412.95MB
    6.课时6项目实战-时间序列预测问题.mp419.59MB
    5.课时5循环神经网络中Layer的使用-2.mp414.44MB
    4.课时4循环神经网络中Layer使用-1.mp416.04MB
    3.课时3循环神经网络基本原理-2.mp416.3MB
    2.课时2循环神经网络基本原理-1.mp413.68MB
    11.课时11项目实战-情感分类问题.mp433.45MB
    10.课时10RNN训练难题—梯度弥散与梯度爆炸.mp423.86MB
    1.课时1时间序列介绍.mp421.59MB
    GAN对抗生成网络基础
    9GAN实战-1.flv16.82MB
    8WGAN-GP原理.flv30.63MB
    7EM距离.flv19.16MB
    6GAN训练难题.flv37.04MB
    5纳什均衡-2.flv35.39MB
    4纳什均衡-1.flv19.17MB
    3生成对抗网络.flv25.78MB
    2画家的成长历程.flv29.46MB
    12WGAN实战-2.flv35.24MB
    11WGAN实战-1.flv19.71MB
    10GAN实战-2.flv33.53MB
    1数据的分布.flv17.67MB
    CNN卷积神经网络基础
    9-池化与采样操作讲解.mp417.02MB
    8-卷积神经网络图解-4.mp426.54MB
    7-卷积神经网络图解-3.mp425.8MB
    6-卷积神经网络图解-2.mp430.4MB
    5-卷积神经网络图解-1.mp436.88MB
    4-卷积运算详解-4.mp421.91MB
    3-卷积运算详解-3.mp428.37MB
    2-卷积运算详解-2.mp427.98MB
    23-ResNet实战-4.mp417.54MB
    22-ResNet实战-3.mp415.11MB
    21-ResNet实战-2.mp414.52MB
    20-ResNet实战-1.mp414.3MB
    1-卷积运算详解-1.mp430.81MB
    19-ResNet,DenseNet详解.mp418.99MB
    18-ResNet,DenseNet详解.mp418.06MB
    17-BatchNorm-2.mp430.27MB
    15-经典卷积神经网络详解-2.mp413.17MB
    14-经典卷积神经网络详解-1.mp416.68MB
    13-CIFAR100与VGG13实战-4.mp410.4MB
    12-CIFAR100与VGG13实战-3.mp414.83MB
    11-CIFAR100与VGG13实战-2.mp413.69MB
    10-CIFAR100与VGG13实战-1.mp413.99MB
    四:机器学习基础算法教程
    02.机器学习算法课件资料
    机器学习算法PPT
    文本分析.pdf522.2KB
    时间序列分析.pdf767.26KB
    9-LDA与PCA算法.pdf1.04MB
    8-xgboost.pdf932.12KB
    7-推荐系统.pdf1.97MB
    6-支持向量机.pdf1.29MB
    5-贝叶斯算法.pdf539.46KB
    4-聚类算法.pdf788.33KB
    3-决策树与集成算法.pdf1MB
    2-回归算法.pdf1.2MB
    1-AI入学指南.pdf658.64KB
    12-word2vec.pdf2.37MB
    11-神经网络.pdf11.7MB
    10-EM算法.pdf811.45KB
    部分代码资料
    9-聚类算法实验分析
    聚类算法-实验.zip1.71MB
    mldata
    mnist-original.mat52.87MB
    8-Kmeans代码实现
    Kmeans-代码实现.zip5.03MB
    7-聚类算法-Kmeans&Dbscan原理
    4-聚类算法.pdf788.33KB
    6-逻辑回归实验分析
    逻辑回归-实验.zip1.7MB
    5-逻辑回归代码实现
    逻辑回归-代码实现.zip5.04MB
    3-线性回归实验分析
    线性回归-实验.zip643.27KB
    3-模型评估方法
    模型评估方法.ipynb91.18KB
    img
    9.png121.64KB
    8.png74.83KB
    7.png114.25KB
    6.png114.92KB
    5.png73.07KB
    4.png110.41KB
    3.png81.77KB
    2.png110.46KB
    1.png150.08KB
    2-线性回归代码实现
    线性回归-代码实现.zip5.9MB
    1-线性回归原理推导
    2-回归算法.pdf1.2MB
    15-支持向量机原理推导
    6-支持向量机.pdf1.29MB
    14-集成算法实验分析
    随机森林与集成算法-实验.zip11.88MB
    mldata
    mnist-original.mat52.87MB
    13-集成算法原理
    3-决策树与集成算法.pdf1MB
    12-决策树实验分析
    决策树算法-实验.zip284.63KB
    11-决策树代码实现
    决策树-代码实现.zip6.14KB
    10-决策树原理
    3-决策树与集成算法.pdf1MB
    01.机器学习经典算法精讲视频课程
    课程简介
    Python机器学习实训营.docx11.29KB
    项目截图
    QQ截图20190624141428.png140.94KB
    QQ截图20190624141330.png256.27KB
    QQ截图20190624141231.png103.51KB
    QQ截图20190624141129.png137.84KB
    1.png160.05KB
    第一章:线性回归原理推导
    8-优化参数设置.mp426.8MB
    7参数更新方法.mp424.87MB
    6-梯度下降通俗解释.mp420.79MB
    5-参数求解.mp430.74MB
    4-似然函数的作用.mp429.04MB
    3-独立同分布的意义.mp424.48MB
    2-误差项定义.mp426.5MB
    1-回归问题概述.mp419.65MB
    0-课程简介.mp434.95MB
    第五章:逻辑回归原理推导
    2-化简与求解.mp429.45MB
    1-逻辑回归算法原理.mp423MB
    第四章:线性回归实验分析
    线性回归
    1-实验目标分析.mp420.5MB
    9-多项式回归
    9-多项式回归.mp437.56MB
    8-不同策略效果对比
    8-不同策略效果对比.mp433.19MB
    7-MiniBatch方法
    7-MiniBatch方法.mp431.23MB
    6-随机梯度下降得到的效果
    6-随机梯度下降得到的效果.mp444.29MB
    5-学习率对结果的影响
    5-学习率对结果的影响.mp432.27MB
    4-梯度下降模块
    4-梯度下降模块.mp420.72MB
    3-预处理对结果的影响
    3-预处理对结果的影响.mp454.85MB
    2-参数直接求解方法
    2-参数直接求解方法.mp424.6MB
    14-实验总结
    14-实验总结.mp456.17MB
    13-岭回归与lasso
    13-岭回归与lasso.mp491.35MB
    12-正则化的作用
    12-正则化的作用.mp433.82MB
    11-样本数量对结果的影响
    11-样本数量对结果的影响.mp460.4MB
    10-模型复杂度
    10-模型复杂度.mp464.95MB
    第十章:聚类算法实验分析
    聚类
    9-应用实例-图像分割
    9-应用实例-图像分割_20190805_232021.mp439.45MB
    9-应用实例-图像分割.mp439.45MB
    8-Kmenas算法存在的问题
    8-Kmenas算法存在的问题_20190805_232023.mp434.33MB
    8-Kmenas算法存在的问题.mp434.33MB
    7-轮廓系数的作用
    7-轮廓系数的作用_20190805_232028.mp442.23MB
    7-轮廓系数的作用.mp442.23MB
    6-如何找到合适的K值
    6-如何找到合适的K值_20190805_232026.mp434.7MB
    6-如何找到合适的K值.mp434.7MB
    5-评估指标-Inertia
    5-评估指标-Inertia_20190805_232027.mp448.13MB
    5-评估指标-Inertia.mp448.13MB
    4-不稳定结果
    4-不稳定结果_20190805_232028.mp418.31MB
    4-不稳定结果.mp418.31MB
    3-建模流程解读
    3-建模流程解读_20190805_232032.mp449.18MB
    3-建模流程解读.mp449.18MB
    2-聚类结果展示
    2-聚类结果展示_20190805_232030.mp419.58MB
    2-聚类结果展示.mp419.58MB
    1-Kmenas算法常用操作
    1-Kmenas算法常用操作_20190805_232034.mp441.66MB
    1-Kmenas算法常用操作.mp441.66MB
    11-DBSCAN算法
    11-DBSCAN算法_20190805_232033.mp455.48MB
    11-DBSCAN算法.mp455.48MB
    10-半监督学习
    10-半监督学习_20190805_232033.mp447.43MB
    10-半监督学习.mp447.43MB
    第十一章:决策树原理
    8-回归问题解决.mp418.27MB
    7-后剪枝方法.mp424.55MB
    6-预剪枝方法.mp425.09MB
    5-信息增益率与gini系数.mp418.2MB
    4-决策树构造实例.mp425.13MB
    3-信息增益原理.mp430.3MB
    2-熵的作用.mp422.82MB
    1-决策树算法概述.mp424.28MB
    第十三章:决策树实验分析
    决策树
    4-回归树模型
    4-回归树模型.mp441.67MB
    3-树模型预剪枝参数作用
    3-树模型预剪枝参数作用.mp442.67MB
    2-决策边界展示分析
    2-决策边界展示分析.mp441.2MB
    1-树模型可视化展示
    1-树模型可视化展示.mp430.7MB
    第十二章:决策树代码实现
    第五章:决策树
    7-测试算法效果
    7-测试算法效果.mp422.75MB
    6-完成树模型构建
    6-完成树模型构建.mp427.92MB
    5-数据集切分
    5-数据集切分.mp427.5MB
    4-熵值计算
    4-熵值计算.mp440.08MB
    3-整体框架逻辑
    3-整体框架逻辑.mp420.41MB
    2-递归生成树节点
    2-递归生成树节点.mp427.74MB
    1-整体模块概述
    1-整体模块概述.mp411.68MB
    第三章:模型评估方法
    分类模型评估
    8-ROC曲线
    8-ROC曲线.mp431.35MB
    7-阈值对结果的影响
    7-阈值对结果的影响.mp444.63MB
    6-评估指标对比分析
    6-评估指标对比分析.mp452.23MB
    5-混淆矩阵
    5-混淆矩阵.mp423.79MB
    4-交叉验证实验分析
    4-交叉验证实验分析.mp464.47MB
    3-交叉验证的作用
    3-交叉验证的作用.mp447.01MB
    2-数据集切分
    2-数据集切分.mp425.85MB
    1-Sklearn工具包简介
    1-Sklearn工具包简介.mp436.64MB
    第七章:逻辑回归实验分析
    6-多分类-softmax.mp460.57MB
    5-分类决策边界展示分析.mp461.13MB
    4-坐标棋盘制作.mp438.18MB
    3-可视化展示.mp433.21MB
    2-概率结果随特征数值的变化.mp446.69MB
    1-逻辑回归实验概述.mp452.15MB
    第六章:逻辑回归代码实现
    第二章:逻辑回归
    9-训练多分类模型
    9-训练多分类模型.mp447.68MB
    8-鸢尾花数据集多分类任务
    8-鸢尾花数据集多分类任务.mp427.41MB
    7-得出最终结果
    7-得出最终结果.mp455.31MB
    6-梯度计算
    6-梯度计算.mp448.52MB
    5-迭代优化参数
    5-迭代优化参数.mp449.86MB
    4-优化目标定义
    4-优化目标定义.mp437.97MB
    3-完成预测模块
    3-完成预测模块.mp436.73MB
    2-训练模块功能
    2-训练模块功能.mp442.8MB
    1-多分类逻辑回归整体思路
    1-多分类逻辑回归整体思路.mp420.58MB
    12-非线性决策边界
    12-非线性决策边界.mp422.6MB
    11-决策边界绘制
    11-决策边界绘制.mp455.78MB
    10-准备测试数据
    10-准备测试数据.mp440.83MB
    第九章:Kmeans代码实现
    第三章:聚类-Kmeans
    6-聚类效果展示
    6-聚类效果展示.mp452.37MB
    5-鸢尾花数据集聚类任务
    5-鸢尾花数据集聚类任务.mp432.25MB
    4-算法迭代更新
    4-算法迭代更新.mp427.91MB
    3-样本点归属划分
    3-样本点归属划分.mp425.85MB
    2-计算得到簇中心点
    2-计算得到簇中心点.mp424.11MB
    1-Kmeans算法模块概述
    Kmeans算法模块概述.mp49.91MB
    第二章:线性回归代码实现
    第一章:线性回归
    7-得到线性回归方程.mp435.82MB
    3-实现梯度下降优化模块.mp439.6MB
    2-初始化步骤.mp424.11MB
    1-线性回归整体模块概述.mp414.46MB
    9-多特征回归模型
    9-多特征回归模型.mp462.24MB
    8-整体流程debug解读
    8-整体流程debug解读.mp433.99MB
    6-训练线性回归模型
    6-训练线性回归模型.mp444.68MB
    5-数据与标签定义
    5-数据与标签定义.mp443.93MB
    4-损失与预测模块
    4-损失与预测模块.mp446.72MB
    10-非线性回归
    10-非线性回归.mp449.21MB
    第八章:聚类算法-Kmeans&Dbscan原理
    6-DBSCAN可视化展示.mp432.97MB
    5-DBSCAN工作流程.mp441.61MB
    4-DBSCAN聚类算法.mp429.35MB
    3-KMEANS迭代可视化展示.mp431.7MB
    2-KMEANS工作流程.mp423.12MB
    1-KMEANS算法概述.mp428.94MB
    三:超详细人工智能学习大纲
    人工智能大纲升级版本.pdf20.32MB
    六:计算机视觉实战项目
    08.Unet图像分割课程资料
    深度学习分割任务.pdf1.07MB
    unet++.zip409.6MB
    07.MASK-RCNN课程资料
    第五章:迁移学习.zip91.92MB
    第四章:练手小项目-人体姿态识别demo.zip530.27MB
    第三章:基于MASK-RCNN框架训练自己的数据与任务.zip439.38MB
    第二章:MaskRcnn网络框架源码详解.zip1.14GB
    第六章:物体检测-faster-rcnn
    iccv15_tutorial_training_rbg.pdf17.36MB
    FasterRcnn.zip2.74GB
    faster-rcnn.pptx3.23MB
    FasterR-CNNTowardsReal-TimeObjectDetectionwithRegionProposalNetworks.pdf6.49MB
    06.YOLOV5目标检测课程资料
    YOLO5.zip469.64MB
    YOLO.pdf1.88MB
    PyTorch-YOLOv3.zip462.21MB
    NEU-DET.zip26.68MB
    05.OpenCV图像处理课程资料
    第十章:项目实战-文档扫描OCR识别.zip44.94MB
    第十五章:项目实战-答题卡识别判卷.zip3.07MB
    第十四章:项目实战-停车场车位识别.zip111.34MB
    第十三章:案例实战-全景图像拼接.zip829.49KB
    第十九章:项目实战-目标追踪.zip125.33MB
    第十八章:Opencv的DNN模块.zip49.62MB
    第九章:项目实战-信用卡数字识别.zip548.1KB
    第二十章:人脸关键点定位.zip69.75MB
    第二十一章:项目实战-疲劳检测.zip74.15MB
    第八章notebook课件.zip1.29MB
    第2-7章notebook课件.zip7.28MB
    第16-17章notebook课件.zip9.37MB
    第11-12章notebook课件.zip52.05MB
    04.Unet图像分割实战视频课程
    5.mp4321.92MB
    4.mp4199.03MB
    3.mp4404.95MB
    2.mp4199.67MB
    1.mp4258.34MB
    03.MASK-RCNN目标检测实战视频课程
    第一章:物体检测框架-MaskRcnn项目介绍与配置
    第五章:必备基础-迁移学习与Resnet网络架构
    8-迁移学习效果对比
    8-迁移学习效果对比.mp453.12MB
    7-加载训练好的权重
    7-加载训练好的权重.mp437.98MB
    6-shortcut模块
    6-shortcut模块.mp440.55MB
    5-Resnet基本处理操作
    5-Resnet基本处理操作.mp431.42MB
    4-Resnet网络细节
    4-Resnet网络细节.mp438.85MB
    3-Resnet原理
    3-Resnet原理.mp4107.27MB
    2-迁移学习策略
    2-迁移学习策略.mp415.11MB
    1-迁移学习的目标
    1-迁移学习的目标.mp411.47MB
    3-参数配置
    0-参数配置.mp497.35MB
    2-开源项目数据集
    0-开源项目数据集.mp442.25MB
    1-Mask-Rcnn开源项目简介
    0-Mask-Rcnn开源项目简介.mp487.81MB
    0-课程简介
    0-课程简介.mp418.57MB
    第四章:练手小项目-人体姿态识别demo
    3-流程与结果演示
    3-流程与结果演示.mp448.27MB
    2-网络架构概述
    2-网络架构概述.mp432.38MB
    1-COCO数据集与人体姿态识别简介
    1-COCO数据集与人体姿态识别简介.mp447.16MB
    第三章:基于MASK-RCNN框架训练自己的数据与任务
    6-测试与展示模块
    6-测试与展示模块.mp438.28MB
    5-基于标注数据训练所需任务
    5-基于标注数据训练所需任务.mp439.36MB
    4-maskrcnn源码修改方法
    4-maskrcnn源码修改方法.mp463.01MB
    3-完成训练数据准备工作
    3-完成训练数据准备工作.mp426.13MB
    2-使用labelme进行数据与标签标注
    2-使用labelme进行数据与标签标注.mp425.83MB
    1-Labelme工具安装
    1-Labelme工具安装.mp414.08MB
    第六章:必备基础-物体检测FasterRcnn系列
    7-论文解读-4-网络细节
    论文解读-4-网络细节.mp4266.79MB
    6-论文解读-3-损失函数定义
    论文解读-3-损失函数定义.mp4209.66MB
    5-论文解读-2-RPN网络结构
    论文解读-2-RPN网络结构.mp4114.12MB
    4-论文解读-1-论文整体概述
    论文解读-1.mp4121.72MB
    3-三代算法-3-faster-rcnn概述
    三代算法-3-faster-rcnn概述.mp429.66MB
    2-三代算法-2-深度学习经典检测方法
    三代算法-2-深度学习经典检测方法.mp439.13MB
    1-三代算法-1-物体检测概述
    三代算法-1-物体检测概述.mp436.53MB
    第二章:MaskRcnn网络框架源码详解
    9-正负样本选择与标签定义
    9-正负样本选择与标签定义.mp427.31MB
    8-DetectionTarget层的作用
    8-DetectionTarget层的作用.mp425.3MB
    7-Proposal层实现方法
    7-Proposal层实现方法.mp432.9MB
    6-候选框过滤方法
    6-候选框过滤方法.mp415.3MB
    5-RPN层的作用与实现解读
    5-RPN层的作用与实现解读.mp430.41MB
    4-基于不同尺度特征图生成所有框
    4-基于不同尺度特征图生成所有框.mp432.51MB
    3-生成框比例设置
    3-生成框比例设置.mp427.86MB
    2-FPN网络架构实现解读
    2-FPN网络架构实现解读.mp455.16MB
    1-FPN层特征提取原理解读
    1-FPN层特征提取原理解读.mp441.63MB
    12-整体框架回顾
    12-整体框架回顾.mp428.39MB
    11-RorAlign操作的效果
    11-RorAlign操作的效果.mp425.33MB
    10-RoiPooling层的作用与目的
    10-RoiPooling层的作用与目的.mp432.95MB
    02.YOLOV5目标检测视频课程
    7-输出结果与项目总结.mp432.44MB
    6-缺陷检测模型培训.mp427.21MB
    5-项目参数配置.mp418.87MB
    4-各版本模型介绍.mp424.31MB
    3-标签转格式脚本制作.mp423.84MB
    2-数据与标签配置方法.mp428.38MB
    1.任务需求与项目概述.mp412.45MB
    01.OpenCV图像处理实战视频课程
    项目实战一:信用卡数字识别
    5-模板匹配得出识别结果
    5-模板匹配得出识别结果.mp447.17MB
    4-输入数据处理方法
    4-输入数据处理方法.mp428.43MB
    3-模板处理方法
    3-模板处理方法.mp423.33MB
    2-环境配置与预处理
    2-环境配置与预处理.mp434.42MB
    1-总体流程与方法讲解
    总体流程与方法讲解.mp420.27MB
    项目实战五:答题卡识别判卷
    4-选项判断识别
    4-选项判断识别.mp456.6MB
    3-填涂轮廓检测
    3-填涂轮廓检测.mp425.27MB
    2-预处理操作
    2-预处理操作.mp423.72MB
    1-整体流程与效果概述
    1-整体流程与效果概述.mp429.14MB
    项目实战四:停车场车位识别
    8-基于视频的车位检测
    8-基于视频的车位检测.mp4135.13MB
    7-识别模型构建
    7-识别模型构建.mp440.85MB
    6-车位区域划分
    6-车位区域划分.mp456.77MB
    5-按列划分区域
    5-按列划分区域.mp454.11MB
    4-车位直线检测
    4-车位直线检测.mp460.83MB
    3-图像数据预处理
    3-图像数据预处理.mp456.29MB
    2-所需数据介绍
    2-所需数据介绍.mp434.02MB
    1-任务整体流程
    1-任务整体流程.mp471.02MB
    项目实战三:全景图像拼接
    4-流程解读
    4-流程解读.mp421.39MB
    2-图像拼接方法
    2-图像拼接方法.mp444.55MB
    2-RANSAC算法
    2-RANSAC算法.mp434.01MB
    1-特征匹配方法
    1-特征匹配方法.mp428.13MB
    项目实战二:文档扫描OCR识别
    6-文档扫描识别效果
    6-文档扫描识别效果.mp428.59MB
    5-tesseract-ocr安装配置
    5-tesseract-ocr安装配置.mp440.87MB
    4-透视变换结果
    4-透视变换结果.mp432.43MB
    3-原始与变换坐标计算
    3-原始与变换坐标计算.mp425.84MB
    2-文档轮廓提取
    2-文档轮廓提取.mp427.37MB
    1-整体流程演示
    1-整体流程演示.mp421.22MB
    二:AI必读经典书籍
    02.AI必读经典书籍
    OpenCV书籍.rar63.15MB
    04.计算机视觉相关书籍
    超详细的计算机视觉书籍.zip1.03GB
    03.深度学习相关书籍
    深度学习技术图像处理入门by杨培文,胡博强().pdf125.1MB
    深度学习(花园书).pdf32.99MB
    Tensorflow技术解析与实战.pdf39.49MB
    《神经网络与深度学习》(邱锡鹏-20191121).pdf7.02MB
    《TensorFlow2.0深度学习算法实战教材》-中文版教材分享.pdf21.41MB
    21年最新-李沐《动手学深度学习第二版》中、英文版免费分享
    Dive-into-DL-Pytorch.pdf33.5MB
    d2l-zh-pytorch.pdf18.1MB
    d2l-en-pytorch.pdf26.97MB
    《深度学习之PyTorch物体检测实战》PDF+源代码
    深度学习之PyTorch物体检测实战论文导引.docx30.41KB
    深度学习之PyTorch物体检测实战.pdf11.64MB
    深度学习之PyTorch物体检测实战.mobi12.71MB
    深度学习之PyTorch物体检测实战.epub10.35MB
    源代码
    GitHub地址.txt57Byte
    Detection-PyTorch-Notebook
    README.md29Byte
    chapter8
    retinanet.py1.3KB
    nms.py895Byte
    chapter7
    squeezenet_fire.py978Byte
    shufflenet_v1.py1.94KB
    mobilenet_v2_block.py743Byte
    mobilenet_v2.py4.11KB
    mobilenet_v1.py1.45KB
    chapter6
    yolov2-pytorch
    train.py4.7KB
    test.py4.93KB
    requirements.txt64Byte
    README.md4.63KB
    make.sh488Byte
    demo.py2.73KB
    darknet.py12.01KB
    utils
    yolo.pyx1.69KB
    yolo.py7.31KB
    yolo.c290.81KB
    timer.py1.08KB
    nms_wrapper.py866Byte
    network.py4.31KB
    im_transform.py973Byte
    build.py6KB
    bbox.pyx9.24KB
    bbox.c449.75KB
    __init__.py0Byte
    pycocotools
    UPSTREAM_REV80Byte
    maskApi.h1.88KB
    maskApi.c7.52KB
    mask.py3.96KB
    license.txt1.5KB
    cocoeval.py20.28KB
    coco.py15.08KB
    _mask.pyx10.46KB
    _mask.c583.59KB
    __init__.py21Byte
    nms
    py_cpu_nms.py1.03KB
    nms_kernel.cu4.95KB
    gpu_nms.pyx1.08KB
    gpu_nms.hpp146Byte
    cpu_nms.pyx2.19KB
    __init__.py0Byte
    .gitignore15Byte
    layers
    __init__.py0Byte
    roi_pooling
    roi_pool_py.py2.21KB
    roi_pool.py3.17KB
    build.py822Byte
    __init__.py0Byte
    src
    roi_pooling_cuda.h420Byte
    roi_pooling_cuda.c2.75KB
    roi_pooling.h178Byte
    roi_pooling.c4.01KB
    cuda
    roi_pooling_kernel.h767Byte
    roi_pooling_kernel.cu7.82KB
    _ext
    __init__.py0Byte
    roi_pooling
    __init__.py385Byte
    reorg
    reorg_layer.py1.59KB
    build.py802Byte
    __init__.py0Byte
    src
    reorg_cuda_kernel.h251Byte
    reorg_cuda_kernel.cu1.8KB
    reorg_cuda.h122Byte
    reorg_cuda.c453Byte
    reorg_cpu.h123Byte
    reorg_cpu.c1.02KB
    _ext
    __init__.py0Byte
    reorg_layer
    __init__.py385Byte
    demo
    scream.jpg170.42KB
    ragged-edge-london-office-6.jpg595.12KB
    person.jpg111.21KB
    horses.jpg130.37KB
    giraffe.jpg373.99KB
    eagle.jpg138.56KB
    dog.jpg159.92KB
    2007_000039.jpg63.15KB
    out
    scream.jpg72.08KB
    ragged-edge-london-office-6.jpg1.4MB
    person.jpg121.59KB
    horses.jpg145.69KB
    giraffe.jpg231.73KB
    eagle.jpg155.64KB
    dog.jpg181.9KB
    2007_000039.jpg66.52KB
    datasets
    voc_eval.py7.02KB
    pascal_voc.py10.63KB
    imdb.py5.02KB
    __init__.py0Byte
    cfgs
    config_voc.py561Byte
    config.py2.7KB
    __init__.py0Byte
    exps
    darknet19_exp2.py447Byte
    darknet19_exp1.py447Byte
    __init__.py0Byte
    chapter5
    ssd-pytorch
    train.py8.07KB
    test.py3.78KB
    ssd.py7.15KB
    README.md7.18KB
    LICENSE1.06KB
    eval.py15.5KB
    .gitignore1.42KB
    .gitattributes110Byte
    weights
    vgg16_reducedfc.pth78.14MB
    utils
    augmentations.py13.15KB
    __init__.py42Byte
    __pycache__
    augmentations.cpython-35.pyc15.66KB
    __init__.cpython-35.pyc182Byte
    layers
    box_utils.py9.61KB
    __init__.py48Byte
    modules
    multibox_loss.py5.82KB
    l2norm.py758Byte
    __init__.py105Byte
    __pycache__
    multibox_loss.cpython-35.pyc4.18KB
    l2norm.cpython-35.pyc1.3KB
    __init__.cpython-35.pyc262Byte
    functions
    prior_box.py1.95KB
    detection.py2.63KB
    __init__.py97Byte
    __pycache__
    prior_box.cpython-35.pyc1.91KB
    detection.cpython-35.pyc2.51KB
    __init__.cpython-35.pyc259Byte
    __pycache__
    box_utils.cpython-35.pyc8.37KB
    __init__.cpython-35.pyc175Byte
    doc
    ssd.png71.03KB
    SSD.jpg47.22KB
    detection_examples.png1.96MB
    detection_example2.png318.78KB
    detection_example.png365.21KB
    demo
    live.py3KB
    demo.ipynb1.26MB
    __init__.py0Byte
    data
    voc0712.py6.4KB
    example.jpg136.8KB
    config.py726Byte
    __init__.py1.31KB
    scripts
    VOC2012.sh763Byte
    VOC2007.sh971Byte
    COCO2014.sh1.91KB
    __pycache__
    voc0712.cpython-35.pyc6.82KB
    config.cpython-35.pyc948Byte
    coco.cpython-35.pyc7.78KB
    __init__.cpython-35.pyc1.82KB
    __pycache__
    ssd.cpython-35.pyc6.65KB
    .idea
    workspace.xml21.11KB
    vcs.xml183Byte
    ssd.pytorch-master.iml398Byte
    modules.xml288Byte
    misc.xml185Byte
    encodings.xml135Byte
    dssd-pytorch
    tcb.py722Byte
    arm.py764Byte
    chapter4
    faster-rcnn-pytorch
    trainval_net.py14.75KB
    test_net.py11.89KB
    requirements.txt80Byte
    README.md6.86KB
    LICENSE1.04KB
    demo.py13.36KB
    _init_paths.py312Byte
    .gitignore2.82KB
    logs
    vgg_voc
    events.out.tfevents.1542983031.aizz291Byte
    events.out.tfevents.1542007867.aizz567Byte
    events.out.tfevents.1542007598.aizz25Byte
    events.out.tfevents.1542007525.aizz25Byte
    events.out.tfevents.1542007423.aizz25Byte
    events.out.tfevents.1542007135.aizz25Byte
    events.out.tfevents.1542006392.aizz25Byte
    events.out.tfevents.1541646048.aizz1.24MB
    events.out.tfevents.1541645839.aizz25Byte
    events.out.tfevents.1541645748.aizz25Byte
    events.out.tfevents.1541645707.aizz25Byte
    lib
    setup.py4.69KB
    make.sh1.25KB
    roi_data_layer
    roidb.py4KB
    roibatchLoader.py8.59KB
    minibatch.py2.85KB
    __init__.py248Byte
    pycocotools
    UPSTREAM_REV80Byte
    maskApi.h1.88KB
    maskApi.c7.52KB
    mask.py3.95KB
    license.txt1.5KB
    cocoeval.py19.44KB
    coco.py14.71KB
    _mask.pyx10.46KB
    __init__.py21Byte
    model
    __init__.py0Byte
    utils
    net_utils.py7.32KB
    logger.py2.41KB
    config.py11.54KB
    blob.py1.6KB
    bbox.pyx3.35KB
    __init__.py0Byte
    .gitignore15Byte
    rpn
    rpn.py4.19KB
    proposal_target_layer_cascade.py9.1KB
    proposal_layer.py6.87KB
    generate_anchors.py3.17KB
    bbox_transform.py9.07KB
    anchor_target_layer.py8.79KB
    __init__.py0Byte
    roi_pooling
    build.py875Byte
    __init__.py0Byte
    src
    roi_pooling_kernel.h767Byte
    roi_pooling_kernel.cu9.35KB
    roi_pooling_cuda.h420Byte
    roi_pooling_cuda.c2.77KB
    roi_pooling.h178Byte
    roi_pooling.c4.01KB
    modules
    roi_pool.py524Byte
    __init__.py0Byte
    functions
    roi_pool.py1.73KB
    __init__.py0Byte
    _ext
    __init__.py0Byte
    roi_pooling
    __init__.py385Byte
    roi_crop
    make.sh219Byte
    build.py881Byte
    __init__.py0Byte
    src
    roi_crop_cuda_kernel.h2.75KB
    roi_crop_cuda_kernel.cu16.77KB
    roi_crop_cuda.h481Byte
    roi_crop_cuda.c4.6KB
    roi_crop.h659Byte
    roi_crop.c22.57KB
    modules
    roi_crop.py287Byte
    gridgen.py16.14KB
    __init__.py0Byte
    functions
    roi_crop.py1002Byte
    gridgen.py2.18KB
    crop_resize.py1.51KB
    __init__.py0Byte
    _ext
    __init__.py0Byte
    roi_crop
    __init__.py382Byte
    crop_resize
    __init__.py310Byte
    roi_align
    make.sh211Byte
    build.py902Byte
    __init__.py0Byte
    src
    roi_align_kernel.h1.23KB
    roi_align_kernel.cu7.55KB
    roi_align_cuda.h369Byte
    roi_align_cuda.c2.37KB
    roi_align.h361Byte
    roi_align.c7.39KB
    modules
    roi_align.py1.63KB
    __init__.py0Byte
    functions
    roi_align.py1.96KB
    __init__.py0Byte
    _ext
    __init__.py0Byte
    roi_align
    __init__.py383Byte
    nms
    nms_wrapper.py757Byte
    nms_kernel.cu4.95KB
    nms_gpu.py299Byte
    nms_cpu.py862Byte
    make.sh209Byte
    build.py850Byte
    __init__.py0Byte
    .gitignore15Byte
    src
    nms_cuda_kernel.h206Byte
    nms_cuda_kernel.cu5.49KB
    nms_cuda.h272Byte
    _ext
    __init__.py0Byte
    nms
    __init__.py377Byte
    faster_rcnn
    vgg16.py2.06KB
    resnet.py8.58KB
    faster_rcnn.py5.65KB
    __init__.py0Byte
    datasets
    voc_eval.py6.5KB
    vg_eval.py4.08KB
    vg.py16.39KB
    pascal_voc_rbg.py10.97KB
    pascal_voc.py14.74KB
    imdb.py8.9KB
    imagenet.py8.22KB
    factory.py2.61KB
    ds_utils.py1.37KB
    coco.py11.77KB
    __init__.py248Byte
    VOCdevkit-matlab-wrapper
    xVOCap.m258Byte
    voc_eval.m1.3KB
    get_voc_opts.m231Byte
    tools
    mcg_munge.py1.46KB
    images
    img4_det_res101.jpg89.3KB
    img4_det.jpg89.3KB
    img4.jpg83KB
    img3_det_res101.jpg104.86KB
    img3_det.jpg104.86KB
    img3.jpg100.36KB
    img2_det_res101.jpg111.4KB
    img2_det.jpg111.4KB
    img2.jpg110.64KB
    img1_det_res101.jpg83.85KB
    img1_det.jpg83.85KB
    img1.jpg76.92KB
    cfgs
    vgg16.yml287Byte
    res50.yml347Byte
    res101_ls.yml439Byte
    res101.yml363Byte
    chapter3
    vgg.py938Byte
    resnet_bottleneck.py966Byte
    inceptionv2.py1.25KB
    inceptionv1.py1.3KB
    fpn.py3.15KB
    detnet_bottleneck.py1.13KB
    densenet_block.py1.11KB
    chapter2
    visdom.py366Byte
    perception_sequential.py375Byte
    perception.py732Byte
    mlp.py437Byte
    chapter1
    model-evaluation
    README.md315Byte
    evaluation.py464Byte
    evaluation.ipynb65.1KB
    lib
    utils.pyc0Byte
    utils.py0Byte
    Evaluator.pyc13.28KB
    Evaluator.py4.43KB
    detection.pyc13.06KB
    detection.py3.64KB
    __pycache__
    utils.cpython-36.pyc5.37KB
    Evaluator.cpython-36.pyc3.85KB
    detection.cpython-36.pyc2.86KB
    data
    results
    class2.png14.99KB
    class1.png14.96KB
    groundtruths
    1.txt110Byte
    detections
    1.txt162Byte
    conf
    conf.yaml459Byte
    arial.ttf304.33KB
    02.机器学习相关书籍
    图解机器学习.pdf59.4MB
    凸优化.pdf5.73MB
    机器学习在量化投资中的应用研究_汤凌冰著_北京:电子工业出版社_2014.11_13662591_P157.pdf25.58MB
    机器学习实战.pdf13.41MB
    机器学习实践指南++案例应用解析+麦好.pdf59.27MB
    机器学习个人笔记完整版2.5.pdf7.75MB
    机器学习导论原书第2版.pdf77.76MB
    机器学习〔中文版〕.pdf9.91MB
    机器学习_周志华.pdf37.53MB
    吴恩达《MachineLearningYearning》完整中文版
    吴恩达MLY
    MLY-zh-cn.pdf5MB
    《跟着迪哥学Python数据分析与机器学习实战》
    《跟着迪哥学Python数据分析与机器学习实战》PDF+唐宇迪.pdf98.83MB
    《跟着迪哥学Python数据分析与机器学习实战》.mobi67.29MB
    《跟着迪哥学Python数据分析与机器学习实战》.epub40.11MB
    01.Python基础书籍
    《Python基础教程(第3版)》
    源代码.zip87.95KB
    Python基础教程(第3版)高清英文版.pdf5.96MB
    01.人工智能行业报告
    53份人工智能行业报告.zip129.49MB
  • 下载地址
    点击免费下载
  • 教程标签
    openresty从入门到实战 kotlin从入门到进阶实战 php从入门到精通 实战 入门

推荐的视频教程榜单

  1. 三年级科学课升级版:与教科版同步学习11-30
  2. 2024高二英语何红艳秋季班:语法阅读写作全突09-25
  3. 2024张亮高二英语寒假班:虚拟语气+阅读写作09-25
  4. 探秘中华文明:60件镇馆之宝的博物馆之旅09-25
  5. 2024高二英语寒假特训班:虚拟语气+阅读写作09-25
  6. 少年编程思维课:提升孩子智力的秘密武器09-25
  7. 2024张亮高二英语尖端班秋季全套课程+笔记09-25
  8. 2024高二英语何红艳尖端班:阅读写作+语法精09-25
  9. Procreate板绘入门:从零到插画大师09-25
  10. 2024高二英语聂宁暑假班(尖端班+课堂笔记+技09-25
  11. 夏莎教你:实用魅力提升术09-25
  12. 台球一杆清台技巧:从入门到精通09-25
  13. 2024张亮高二英语冲顶班·秋季系统课(阅读+09-25
  • 可能感兴趣的视频推荐
  • 2024高二英语寒假特训班:虚拟语气+

    2024高二英语寒假特训班:虚拟语气+

  • 2024张亮高二英语寒假班:虚拟语气+

    2024张亮高二英语寒假班:虚拟语气+

  • 2024高二英语何红艳秋季班:语法阅读

    2024高二英语何红艳秋季班:语法阅读

  • 2024高二英语何红艳尖端班:阅读写作

    2024高二英语何红艳尖端班:阅读写作

  • 2024张亮高二英语尖端班秋季全套课

    2024张亮高二英语尖端班秋季全套课

  • 2024张亮高二英语冲顶班·秋季系统

    2024张亮高二英语冲顶班·秋季系统

  • 2024高二英语聂宁暑假班(尖端班+课

    2024高二英语聂宁暑假班(尖端班+课

  • 何红艳高二英语暑假特训班:倒装句+

    何红艳高二英语暑假特训班:倒装句+

  • 2024张亮高二英语暑假班-阅读完形

    2024张亮高二英语暑假班-阅读完形

  • 2024张亮高二英语冲顶班暑假全套课

    2024张亮高二英语冲顶班暑假全套课

  • 2024高二物理孙竟轩春季班(尖端课+

    2024高二物理孙竟轩春季班(尖端课+

  • 2024高二物理冲顶班:彭娟娟精讲振荡

    2024高二物理冲顶班:彭娟娟精讲振荡

听课网 | 来漫画 | 画涯
All Rights Reserved

免责声明:本站资源来源于网络连接,版权归原作者所有,若有侵犯您的权利,请联系告知,我们将立即予以删除。